2023年3月22日上午8点,天津大学学报(英文版)系列学术讲座第42期将在科研云Bilibili和邃瞳科学云微信视频号平台上线!本期我们邀请到Prof. Charles Sykes (Tufts University)带来题为“Single-Atom Alloy Catalysts: Born in a Vacuum, Tested in Reactors, and Understood In Silico”的精彩讲座。更多精彩,敬请期待!
ABSTRACT
In this talk I will discuss a new class of heterogenous catalysts called Single-Atom Alloys in which precious, reactive metals are utilized at the ultimate limit of efficiency. These catalysts were discovered by combining atomic-scale scanning probes with more traditional approaches to study surface-catalyzed chemical reactions. This research provided links between atomic-scale surface structure and reactivity which are key to understanding and ultimately controlling important catalytic processes. In collaboration with Maria Flytzani-Stephanopoulos these concepts derived from our surface science and theoretical calculations have been used to design Single-Atom Alloy nanoparticle catalysts that are shown to perform industrially relevant reactions at realistic reaction conditions. For example, alloying elements like platinum and palladium with cheaper, less reactive host metals like copper enables 1) dramatic cost savings in catalyst manufacture, 2) more selective hydrogenation and dehydrogenation reactions, 3) reduced susceptibility to CO poisoning, and 4) higher resistance to deactivation by coking. I go on to describe very recent theory work by collaborators Stamatakis (UCL) and Michaelides (Cambridge University) that predicts reactivity trends for a wide range of Single-Atom Alloy combinations for important reaction steps like H-H, C-H, N-H, O-H, and CO2 activation. Overall, I hope to highlight that this combined surface science, theoretical, and catalyst synthesis and testing approach provides a new and somewhat general method for the a priori design of new heterogeneous catalysts.
BIOGRAPHY
【关闭】